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This paper investigates several factors affecting the accuracy and effkiency of numerical 
determination of the bound state energy eigenvalues of the one dimensional Schrodinger 
equation. The efficiencies of the finite element method (FEM), the Numerov-Cooley method, 
and the finite difference method are compared. From this comparison, it is concluded that for 
potentials containing a single energy minimum, the Numerov-Cooley method is the most 
efftcient, while for the most complex potentials the finite element method is superior due to its 
better numerical stability in the classically forbidden regions. The effects of various 
polynomial interpolation schemes on the calculated eigenvalues of potentials known only on a 
small number of points is examined. It is found that while higher order tits are superior to 
lower ones when the potential points are known accurately, they can introduce spurious infor- 
mation into the potential for inaccurately known points, and thus produce poor eigenvalues. 
Likewise, for accurately known potentials, a spline or Hermitian interpolation is better than a 
Lagrangian fit. but the Lagrangian functions are less susceptible to noise in a less well known 
case. 

I. INTRODUCTION 

The problem often arises of numerically solving the Schrddinger equation given the 
potential on only a discrete set of points. A priori potentials are difficult to compute 
accurately and usually are available only for a small set of points. In addition, these 
points are usually known only over a small “important” range of separations. The 
potential must be interpolated in some manner and extrapolated to regions not given 
explicitly by potential points and their interpolation [l-3]. This paper discusses and 
evaluates fits to a priori potentials and subsequent numerical solution of the eigen- 
value problem. 

Numerous techniques exist in the literature for solving the Schrodinger equation 
numerically [ 1,4-71. An adaptation of the finite element method (FEM) is given here 
which has the properties of being efftcient and easily applicable to any potential. This 
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method is compared with several others and its advantages and disadvantages 
discussed. 

The finite element method has had extensive application in engineering problems 
[8,9]. Only recently has it been brought into the sphere of quantum mechanics by 
Askar, who has applied the method to the calculation of the bound states of the 
hydrogen atom using linear interpolation functions [lo]. Nordholm and Bacskay 
have presented a variation of FEM for bound and continuum state problems [ 11, 12 ]. 
More recently Askar et al. have applied the FEM to the collinear reactive scattering 
of H + H, [ 131. In the FEM formulation for the bound state problem, the 
Schrodinger equation becomes a generalized algebraic eigenvalue problem. In 
addition, it is easily extended to multiple dimensions. This has been utilized by 
Friedman et al. in the solution of the two dimensional Schrodinger equation ] 14 1. 

In Section II the finite element method for bound state solutions to the Schrodinger 
equation is discussed and an efficient algorithm is presented for the solution of the 
resulting generalized eigenvalue problem. The accuracy and convergence properties of 
the method are discussed. The efficiency of FEM is also compared with that of other 
methods. In Section III, the use of interpolating polynomials and various 
extrapolating forms for potentials are investigated. A summary of the results is 
provided in Section IV. 

II. THE FINITE ELEMENT METHOD 

The FEM is simple and straightforward for the one dimensional eigenvalue 
problem. It can be cast into a form resembling the Rayleigh-Ritz variation method. 
Since the complete method is given elsewhere [ 15, 161, it will only be outlined here. 

The radial or one dimensional Schriidinger equation may be written 

I/‘+ [E- V(r)]iy=O. (1) 

The bound state boundary conditions are simply v/(r) = 0 at r = ra and r = rb, where 
ra and rb are the boundaries of the region. If Eq. (1) is multiplied by y(r) and 
integrated once, an equivalent form is obtained, 

vO-J v’(r,> - v&J v’(rJ 

=- 
.i 

y’(r)’ dr + 
I 

y(r) u(r) y(r) dr, (2) 

where u(r) = E - V(r). The first term in Eq. (2) is zero due to the boundary 
conditions. If ra and rb are far enough into the classically forbidden region of the 
potential, then these boundary conditions will correspond closely to the physically 
correct ones. The functional which will be extremized using a suitable basis set is 
given by 

Z[wl = - 1 [v’@)12 dr + 1 w(r) o(r) v(r) dr. (3) 
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In distinction to the usual choices of basis functions, which are globally defined, 
one chooses a basis set with functions which are non-zero over only small regions, or 
elements. These functions must satisfy certain continuity and completeness 
conditions, which will be discussed later. 

The wavefunction is expanded in the basis functions as, 

y(r) = 2: Ci Ni(r), (4) 

where the Ci are the coefficients and the Ni are interpolation functions. (A possible 
set of such functions are described in detail in Appendix A.) The index i denotes the 
associated node which is related to a spatial point in the region of interest. If Eq. (4) 
is substituted into the functional 11~1, one obtains 

I[ y] = 2 CiC,i J (N,(r) u(r) N,(r) - N:(r) N;(r)) dr. 
i.j 

(5) 

This expression can be extremized in the usual way by evaluating the variation in I 
with respect to Cj, and equating to zero. The resulting equation can be written 

r (Hji + ES,,,) ci = 0, (6) 
i 

where 

Hji = f [H,(r) V(r) N,(r) -NJ(r) N;(r)] dr, (7) 

and 

Sji = I_ Nj(r) N,(r) dr. (8) 

Since Sji is not diagonal, this is a generalized eigenvalue problem. Techniques for 
solving the system are discussed later in this section and in the appendices. 

An important feature of the functional in Eq. (5) is the absence of the second 
derivative. Consequently, the requirements on the trial functions for the functional are 
less stringent than for the original Schrodinger equation, Eq. (1). 

As was previously stated, the boundaries are chosen sufficiently into the classically 
forbidden region so that neglect of the left-hand side of Eq. (2) is valid. This region 
between ra and rb can then be divided into intervals or elements, not necessarily of 
equal size. In two dimensions, the elements can be triangular, rectangular, or 
whatever shape is appropriate to the region. Curved boundaries are also treatable, 
although they may complicate the evaluation of the necessary surface integrals over 
the elements. 

Once the geometry is specified, integrals are evaluated analytically over the 
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elements. For the overlap integral, Sii, and the kinetic energy integral, (Nj INi) can 
be evaluated analytically given the form of Ni. For the potential integral, (Njl V(Nj), 
the evaluation must normally be numerical. In addition, since this integral is 
dependent on the potential, it varies from element to element. 

Excess error can be introduced into this procedure in several ways. One is a poor 
choice of the region of integration; that is, the region does not sufficiently penetrate 
the non-classical region of the potential. Another is the use of excessively large 
elements. 

Usually the functions are chosen to be simple piecewise polynomials with certain 
continuity and completeness properties. A convenient choice for these polynomials 
are Lagrangian or Hermitian interpolates, with the property, 

(9) 

where 6, is a kronecker delta. Hence I is simply Ci, which provides direct 
physical significance for the coefficients determined by the solution of Eq. (6). The 
condition specified by Eq. (9) also provides the necessary continuity requirements for 
the interpolation functions. This is described in greater detail by the example below. 

The functions Ni are associated with nodes i, the number of which in one element 
is determined by the polynomial degree. For example, if there are nodes only at the 
endpoints of the element, the lowest order uniquely defined polynomial is linear. If a 
third node is added to the element, a quadratic polynomial is used. For live nodes per 
element a fourth order Lagrangian interpolate could be employed. If Hermitian inter- 
polates are to be used, specifying both function and derivative at the nodes, then a 
cubic function would be used in a two node element. These functions are termed 
interpolation functions since they provide the solution between the nodes given the 
coefficients Ci, which are the solution at the nodes. 

An example will clarify the nodal structure and the significance of Eq. (9). 
Consider the quadratic interpolate case of five nodes numbered consecutively, and 
divided into two elements: 

The nodes (numbered l-5) are associated with elements (numbered I and II) with 
node 3 being shared by both elements. Interface nodes are called primary and interior 
nodes are called secondary. The polynomials Ni will be quadratic Lagrangian inter- 
polates that satisfy Eq. (9). Between nodes 1 and 3, N, will be non-zero, but unity at 
2. N, is unity at 1 and zero at nodes 2 and 3. The interpolates are defined only on the 
element containing the node, so that N4 and N, will be zero in the first element. Note, 
though, that N, is non-zero in both elements, but not beyond. Hence for r, < r < r3, 
the solution is given by, 

v(r) = C,N,W + GN,(r) + C,N,(r). (10) 
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One should note that the functional form of N,(r) is different in elements I and II. In 
order to maintain continuity at the element interface, the interpolate property given 
by Eq. (9) is crucial. Note that for r = r3, both N,(r,) and N,(r,) are zero and N,(r,) 
and N,(r,) are zero. This interpolate property ensures continuity across the element 
interface without adding any additional equations to the system of Eq. (6). In 
Appendix A the Lagrangian interpolates are given for the linear case, and extension 
to higher order is described. 

The kinetic energy and overlap integrals of Eqs. (8) and (9) can be evaluated easily 
from the analytic form of the interpolates. However, the potential integral is not in 
general amenable to analytic treatment. The potential can be approximated, however, 
by an interpolation of the values at the nodes. For instance, in element I of the 
system shown above the potential becomes, 

w> = WI) W,) + W,) Ndr)+ ?,> N3(r)* (11) 
Substituting this into the potential integral of Eq. (7) reduces this integral to a 
weighted sum of integrals of the form (Ni) Nk(Nj), which can be evaluated 
analytically. This process simplifies the computation of the spatially dependent 
potential integrals. A further approximation has thus been introduced into the 
procedure. 

The assembly of the integrals is straightforward. Each node is considered sequen- 
tially, and all node couplings are accumulated in two matrices, H and S. Consider 
again the two element, live node example. Note that node 3 has contributions from 
both elements. Thus, in addition to H,, , the elements H,, , H,,, H,,, and H,, are 
non-zero. 

The boundary conditions for the bound state problem may be incorporated into the 
matrix by omitting the nodes at the endpoints of the potential region, which is the 
equivalent to equating the coefficients at those points to zero. The remaining nodes 
are zero at these endpoints by virtue of the definition in Eq. (9). 

A. Convergence Properties and Errors in the Finite Element Method 

The convergence properties of the finite element method have been extensively 
studied. As with any numerical method the convergence tests must be implemented in 
a consistent way to obtain correct solutions. Solutions may appear converged, but 
may in fact converge to an erroneous solution. With the FEM, solutions are tested in 
two ways: (i) the given mesh is successively refined, or (ii) for a specified mesh 
scheme, the degree of the interpolating polynomial is increased. These tests in them- 
selves, however, do not assure a correctly converged solution unless both the elements 
and interpolation functions satisfy certain criteria. These requirements will be 
discussed later in this section. 

First we consider convergence by element reduction. Refinement of the mesh must 
occur in a regular fashion. All the mesh schemes must also possess the same boun- 
daries in the potential region of interest. In order to investigate the convergence of the 
wavefunction, each successive refinement must possess a subset of the nodal structure 
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from previous node schemes. Hence each successive scheme retains all the previous 
nodes. This is neccessary because, as will be shown, the error between the nodes is 
generally larger than that at the nodes, and meaningful convergence criteria can be 
given only for nodal values. 

Interpolation functions Ni must also satisfy certain specific requirements of 
completeness and compatibility. The completeness condition requires that the inter- 
polating polynomial be of at least degree k, where k is the highest order derivative of 
the variable in the functional. Hence the functional .within an element is defined both 
in terms of the variable and its derivatives. If the element size now approaches zero, 
the function approaches the true solution. If a higher degree polynomial is used, one 
can in general expect that the convergence will be more rapid. 

Compatibility requires that the solution and its derivatives up to (k - 1)th order be 
continuous across elemental interfaces. This condition is sometimes called element 
conformity. For the functional in Eq. (5) only continuity of the approximate solution 
is required. If a discontinuity occurs in the derivative, the integrals can still be 
integrated and no problem is presented. 

Several factors may prevent a true quantum mechanical solution. However, in a 
numerical sense the solution can be made exact to an arbitrary degree of accuracy. 
The error contribution from round-off will not be considered, and instead the errors 
introduced by the method itself will be examined. In general the errors can be divided 
into three classes: 

1. discretization errors; 
2. numerical integration errors; and 
3. interpolation errors. 

Discretization errors occur since for any realistic potential the relevant region of 
space is of infinite extent and cannot be accounted for by a finite number of elements. 
Since the wavefunction is not in fact zero beyond the integration limits chosen, an 
error results. This can be reduced by extending the region treated further into the 
classically forbidden region. 

In most cases the potential integral is too complicated to evaluate analytically, and 
numerical quadrature is more convenient. This introduces an integration error. 

The last source of error depends on the type of interpolation function used. If Ni is 
a degree m polynomial (m > k), the order of error in the interpolation is of order 
h “‘+I, where h is the element size (for equal elements). However, this is not the error 
in either the eigenfunctions or the eigenvalues. It has been shown elsewhere that the 
error in eigenvalues is of order h*‘“, where m is the order of the interpolate [ 151. Both 
integration and interpolation errors are reduced by increasing the number of elements, 
thereby reducing h. 

The wavefunctions for the Morse oscillator, 

V(r) = 4( 1 - e-“*)*, (12) 
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have been calculated using FEM and have been compared to the analytic solutions. 
The absolute errors have been plotted in Fig. 1 for the lowest two states. The results 
were obtained using 30 element (89 node) and 60 element (179 node) regions with 
cubic Lagrangian interpolates. The integration boundaries were r = -4 and r = 13; 
for r < -4 and r > 13, the approximate solution is equated to zero. As can be seen in 
plate d, and less visibly in plate b, the discretization error in the wavefunction is 
greatest near the boundary points. The error beyond each cusp (at r = -4 and r = 13) 
is identically the exact wavefunction. The magnitude of the error at each cusp could 
be reduced by extending the endpoint further into the non-classical region. The 
discontinuity of the derivative between elements is clearly indicated in the figure. The 
thin line shows the error of the Lagrangian interpolated wavefunction, while the 
heavy line is that for a spline fit of all the nodes. The spline fit has the benefit that the 
discontinuities in the derivative at element interfaces are eliminated and internode 
error of the wavefunction is reduced. A close inspection reveals that the primary node 
error is usually less than that at the secondary nodes. If a spline fit to just the 
primary nodes is used, however, the maximum error is nearly an order of magnitude 
greater than the error shown by the heavy line. The wavefunction error increases for 
the excited states since more nodes are required to describe the increased curvature. 

The eigenvalues obtained from these calculation are a function of the number of 
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FIG. 1. The absolute error in the FEM wavefunction for the Morse potential. Eq. (12): (a) the 
ground state error for a 30-element calculation; (b) the first excited state error for 30 elements: (c) the 
ground state error for 60 elements; (d) the first excited state error for 60 elements. It should be noted 
that the error scales in the lower plates are an order of magnitude less than those above. The light line is 
the cubic Lagrangian error and the heavy line is the error of the spline tit to the primary and secondary 
nodes. The integration limits are r = -4 and 13. 
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elements IZ. The true eigenvalue to which these converge can be written as a power 
series in l/n as 

(13) 

where m is the order of the interpolating function [ 151. If all but the lirst few terms 
are negligible, then a knowledge of E, (‘) for several n’s provides a set of simultaneous 
equations which can be solved for E, . (co1 This process, Richardson extrapolation, is 
used to improve the accuacy of the FEM results. 

B. Efficiency of the Finite Element Method 

The FEM algorithm was coded in FORTRAN for a CDC CYBER 175 using 
linear, quadratic, and cubic Lagrangian polynomials. The cubic version was found to 
be the most accurate and efficient, and was used in all the calculations reported here. 
This implies that in a calculation performed using n elements, the potential, and 
subsequently the wavefunction, were evaluated at (3n - 1) nodes. The efficiency was 
compared to that of the finite difference method [6] and the Numerov-Cooley 
method [4]. Wicke and Harris [l] have found the Numerov-Cooley integration 
method to be more efficient than either the finite difference or the 
Harris-Engerholm-Gwinn (HEG) variational method. However, Numerov 
integration encounters stability problems when one integrates into a classically 
forbidden region, and so modifications must be made in the case of double minimum 
potentials to allow the Numerov-Cooley method to work. Such a problem does not 
occur with the finite element, finite difference, or HEG methods. 

The Numerov-Cooley approach is an iterative one and requires an initial guess of 
the eigenvalues. In the program used here, the first guess of the ground state is 
assumed to be the value of the potential at the equilibrium position. This quickly 
converges to the lowest eigenvalue. After a converged ground state eigenvalue is 
obtained, a harmonic oscillator approximation is used to provide guesses for the 
higher eigenvalues. When a converged result is obtained, the nodes are counted. If 
any states are missing intermediate guesses are made, until all states are found. 

The FEM and Numerov-Cooley programs used here have been made available 
through QCPE [ 171. 

The comparison of execution times was carried out for the calculation of the lowest 
3 1 eigenvalues and eigenvectors of a Morse potential with w, = 1000 cm-’ and 
w,x, = 8 cm-‘. For the potential used here, the equilibrium position was 1.5 atomic 
units, and the boundaries were at 0.0 and 9.0 atomic units. The discretization error 
was less than one part in 10e8 in the v = 30 eigenvalue. The calculations were carried 
out at two levels of accuracy, the first requiring that the uppermost eigenvalue 
(V = 30) be accurate to 10-8, the second requiring that this eigenvalue have a relative 
error of no more than 10p4. Table I summarizes the timing data. For the first set of 
calculations, the FEM results were produced with a 60 element (179 node) direct 
calculation, followed by a 65, a 150 and a 500 element (194, 449, and 1499 node) 
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TABLE I 

Execution Times at Several Levels of Accuracy of Calculating the Y = O-30 Eigenstates of a Morse 
Oscillator” 

Method 

Relative Accuracy Numerov-Cooley FEM Finite differences 

l.-8for v=30 (1.0 -3)h 
3.014 set 

(1.8 -3) 
11.781 + 21.406 

= 33.187 set’ 

(2.0 -3) 
73.168 set 

I.-4for v=30 (7) 
0.971 set 

(2) 
11.781 + 7.793 

= 19.574 set 

(6) 
35.983 set 

’ Eigenvalues are in units of cm-‘. 
’ Numbers in parentheses are the absolute error in v = 30. The notation a --n means a X IO-“. The 

exact eigenvalue is 23,058. 
’ For the FEM results, the upper two numbers represent the time for the direct solution to obtain an 

initial guess and the iterative refinement, respectively. The lower number is the sum. 

iterative calculation, and Richardson extrapolation of the 150 and 500 element 
results. The result had an error of 0.002 in the v = 30 state. The true eigenvalue is 
23,058 cm-‘. The Numerov-Cooley results required a 500 and a 2000 node 
calculation, which left an error of 0.001 cm-‘. While this is more than the total 
number of nodes necessary for FEM, the execution time can be seen to be more than 
an order of magnitude less. The finite difference calculation was based on a 
Richardson extrapolation of 500, 1000, 2000, and 2500 node results. The error in the 
highest eigenvalue was -0.003. The lower-accuracy results for FEM were performed 
with 60, 65, and 175 element calculations, with extrapolation of the 65 and 175 
element cases, and giving an error of 2 cm-’ in v = 30. Numerov-Cooley used a 
single 500 node calculation, with an error of 7 cm-‘. Finally the low-accuracy finite 
difference calculation used extrapolation from 1000 and 2000 nodes, and the error 
was 2 cm-‘. 

There are two additional points to be noted from these results. The first is that in 
this case the potential was relatively simple and required little evaluation effort. If a 
very complex potential were being investigated, the finite difference method would be 
even less efftcient relative to the other two. For high accuracy, this would make little 
difference between the FEM calculations, which required 2321 potential evaluations, 
and the Numerov-Cooley, which required 2500. For the lower accuracy, the 
efficiency of Numerov-Cooley is enhanced since it needs 500 evaluations compared 
with 897 for FEM. The optimal scheme of using each of the methods varies due to 
the differing order of error in step-size of each of the formulations: second order for 
finite difference, fourth for Numerov-Cooley, and sixth for FEM. The low order 
errors in finite difference calculations cause larger error, and make it an ideal 
candidate for extrapolation, as described earlier. The other two methods are less 



166 MALIK,ECCLES,AND SECREST 

improved by the use of extrapolation since they already contain less error. For a fixed 
total number of nodes in a series of calculations, the optimal extrapolation scheme 
differs for finite differences and Numerov-Cooley or FEM. For finite differences the 
points should be distributed over several varying step sizes. For Numerov-Cooley 
and FEM only two calculations need be used for the extrapolation. 

The Numerov-Cooley method is clearly shown to be the most efficient of the 
methods tested. Thus, for single minimum potentials, where no numerical instability 
is expected, Numerov-Cooley is the best method to employ. For multiple minimum 
potentials, where Numerov-Cooley is known to have problems, one of the matrix 
methods would be more appropriate. FEM can be seen to be superior to finite dif- 
ferences. 

III. THE POTENTIAL FITTING PROBLEM 

The potential fitting problem can be succinctly stated. Given a set of a priori 
values of the potential, find a potential function which is suitable for use in 
computing the eigenvalues and eigenvectors of the potential. This entails interpolation 
between the known points and extrapolation beyond their range. Thus there are two 
problems to consider. Extrapolation beyond the a priori points is difftcult and is most 
reliably accomplished by the used of additional information. This problem will be 
treated later. First we shall consider the problem of interpolation. For this purpose 
the exact potential function is used beyond the range of the tabulated points. 

As has been pointed out by Truhlar and Tarara, the interpolation of a potential 
energy surface is an important consideration in bound state eigenvalue problems [3]. 
The form of the interpolating function can introduce differences in the potential 
sufficient to make quite noticeable changes in the calculated eigenvalues. Often a 
potential surface will be computed only in the vicinity of the minimum and must be 
extrapolated to large and small distances. It is important to know how critical the 
long-range behavior of the potential is to the accuracy of eigenvalues. 

A common type of interpolating function is a piecewise polynomial of degree m. 
The three most widely used forms are Lagrangian interpolates, Hermitian inter- 
polates, and spline functions. Lagrangian interpolates are determined by the tabulated 
values of the potential at m + 1 points in the vicinity of the point to be evaluated. 
Hermitian interpolates require a knowledge of the values of both the function and its 
derivative at (m + 1)/2 points, and thus can exist only for odd order m. Both 
Hermitian and Lagrangian interpolates are defined by only a small number of points 
adjacent to the point of evaluation. In contrast spline functions are global functions: 
the fit at any point is affected by all of the tabulated points, although the nearby 
points are the most important. The spline is completely determined by the set of 
functional values, the continuity of the function and its lowest m - 1 derivatives, and 
the specification of (m - 1)/2 derivatives at the two endpoints of the spline region. 
Like Hermitian interpolates, spline functions are always of odd order. 
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A. Morse Potential 

Truhlar and Tarara investigated interpolation accuracy using the Kolos and 
Wolniewicz E, F’C, potential of H, [2]. The error was difficult to assess due to the 
fixed number of potential values available. It would be advantageous to have a better 
measure of the accuracy of interpolation. This can be accomplished by interpolating 
points generated from an analytic potential, which has accurately known eigenvalues. 
The potential used here is a Morse oscillator, given by Eq. (12), which has four 
bound states with eigenvalues 0.9375, 2.4375, 3.4315, and 3.9375. 

The region between r = -2 and r = 6 was evaluated as an interpolation of n 
equispaced points for n = 5, 9, 17, and 33. The interpolation functions were third and 
fifth order Lagrangian, Hermitian, and spline functions. The number of points were 
chosen such that the true potential minimum was at one of the known points. This is 
consistent with the application of the information gained in this study to the fitting of 
ab initio potential surfaces, since the values of the potential in the region around the 
quilibrium position are generally well known. 

The calculation for this series of potentials was done with a Numerov-Cooley 
program. The integration limits were from r = -3.5 to r = 50.0. The step size was 
about 0.107, corresponding to 500 nodes. This was sufficient to produce an accuracy 
of 9 to 10 figures for all four states. 

Tables II-IV show the eigenvalues for the interpolated potentials. The results are 
converged to a relative accuracy better than 10m9, and thus all of the error is the 
result of error in the interpolated potential. In all cases the interpolated potential has 
eigenvalues which seem to converge as more points are added. A fifth order 

TABLE II 

Eigenvalues for Lagrangian Interpolation of Discrete Morse Potential Points between r = -2 and r = 6” 

Number of discrete points (spacing) 

v 5~2.I 9(1.) 17(0.5) 33(0.25) 

0 0.74659300h 0.89290445 0.93457054 0.93731721 
- 0.93905219 0.9376498 1 0.93750260 

1 2.52672956 2.41527342 2.43553495 2.43737193 
- 2.43712370 2.43758170 2.43750179 

2 3.5 1852238 3.42913581 3.43640478 
- 3.43800754 3.4375377 1 

3 3.96196219 3.93552190 3.93714686 
- 3.93794932 3.93751095 

3.4374249 I 
3.43750104 

3.93747503 
3.93750034 

’ Exact Morse potential outside this range. Eigenvalues are in the reduced units of Eq. (1). 
* The upper number in each set is for third order interpolates, while the lower is for fifth order. 
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TABLE III 

Eigenvalues for Hermitian interpolation of Discrete Morse Potential Points between r = -2 and r = 6” 

Number of points (spacing) 

V 5G.l 9(1.) 17(0.5) 33(0.25) 

0 0.858142856 0.933 10309 0.93723218 0.93748336 
0.92728313 0.93726550 0.93749553 0.93749992 
0.91414007 0.93693403 0.93749285 0.93749990 

1 2.36291032 2.43436574 2.43730904 2.43748814 
2.42830638 2.43733260 2.4374968 1 2.43749994 
2.42030243 2.43714476 2.43749497 2.43749993 

2 3.38908722 3.43563016 3.43738564 3.43749290 
3.43085672 3.43739988 3.43749809 3.43749997 
3.42520334 3.4373 129 1 3.43749704 3.43749996 

3 3.92139765 3.93687240 3.93746 15 1 3.93749761 
3.93524784 3.93746668 3.93749936 3.93749999 
3.93383135 3.93744239 3.93749902 3.93749999 

’ Exact Morse potential used beyond this range. Eigenvalues are in the reduced units of Eq. (1). 
b Top number of each group is for third order interpolation, while the bottom two are for fifth order. 

The center result is for interpolation based on the two points around the point to be evaluated plus the 
next discrete point at higher r. The bottom number is for the potential where the extra point is at lower r. 

TABLE IV 

Eigenvalues for Spline Function Interpolation of Discrete Morse Potential Points between r = -2 and 
r = 6” 

v 5(1.) 

Number of points (spacing) 

9(1.) 17(0.5) 
- 

33(0.25) 

0 0.89353476’ 0.93464959 0.93725 140 0.93748367 
0.934307 12 0.93756260 0.93750153 0.93750003 

1 2.34589297 2.43571085 2.43732272 2.43748835 
2.44407468 2.43755 196 2.43750109 2.43750002 

2 3.38701324 3.43619145 3.43739383 3.43749302 
3.44052716 3.43753100 3.43750066 3.43750001 

3 3.92063250 3.93699585 3.93746423 3.93749765 
3.93858868 3.93750998 3.93750022 3.93750000 

’ Exact Morse potential used outside of this range. Eigenvalues are in the reduced units of Eq. (1). 
‘The upper number in each set is for the third order interpolation, while the lower is for fifth order. 
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Lagrangian lit does not exist for five points because at least six points are required. 
Note that for higher quantum numbers there is a decrease not only in the relative 
error, but also in the absolute error in all cases. This reflects the fact that the 
wavefunction depends upon the quantity E - V(r), and as E becomes large, small 
errors in I’ have less effect on the form of the function. A second important feature is 
the accuracy for different interpolation methods. For each type of lit the fifth order 
gives better results than the third. The Lagrangian fits produce the worst results in 
each case. The error in the spline function and Hermitian interpolations are very 
similar, with the spline results being just slighly better in most cases. 

The implication seems to be that spline or Hermitian interpolation schemes are 
preferable to Lagrangian ones. The spline functions have a definite advantage over 
the Hermitian interpolates in that they do not require a knowledge of the derivatives 
at all points. They do require (m - 1)/2 derivatives at the outermost points, but the 
lit is very insensitive to small errors in these values, and numerical evaluation of 
these derivatives is quite satisfactory. Higher order splines suffer from a stability 
problem in evaluation, and are not in widespread use. Recent work on the evaluation 
of higher order splines has made accurate evaluation possible [ 18 ]. 

B. Kolos and Wolniewicz E, F’Z;, Potential for H, 

It should be noted that the results presented above are obtained from a “noiseless” 
potential; that is, the potential is known exactly at the tabulated points. The normal 
case for the fitting of an ab initio potential surface is different in that the tabulated 
points are known only inexactly and contain noise from such sources as roundoff, 
basis set truncation, etc. The properties of “noisy” functions are harder to charac- 
terize (see, for example, [ 191). For these cases “exact” results are not available. The 
H, potential of Kolos and Wolniewicz mentioned earlier provides an example. This 
potential has been investigated by Lin (201, Tobin and Hinze [21], Wolniewicz and 
Orlikowski [22], and Truhlar and Tarara [3]. As has been pointed out by Truhlar 
and Tarara the disagreement between the various sets of calculations are to a large 
extent due to differences in interpolation. The results of the present investigation are 
listed in Tables V and VI. Table V gives eigenvalues for the potential utilizing all 
points given by Kolos and Wolniewicz. Fifteen points in this set are closely spaced 
around the extrema. Table VI presents results for the potential evaluated without 
these 1.5 points. The disagreement between the sets of results with and without the 15 
points is much more pronounced for the fifth order interpolation than for the third. 
Since these 15 points are all in the vicinity of the extrema of the potential and since 
the effect of differences in these points will be local to these regions, we will concen- 
trate on examining the potential in these areas. 

As shown in Figs. 2-5, the fifth order interpolates have some difficulty in handling 
the unevenly spaced points near the minima. The most noticeable problems are with 
the fifth order spline at the inner minimum, and with both the fifth order spline and 
fifth order Hermitian interpolates at the outer minimum. The fifth order spline 
produces a substantial oscillation around the outer minimum, while in the other two 
cases the depth of the minimum is increased and its position slightly shifted. The fifth 



170 MALIK, ECCLES, AND SECREST 

TARLE V 

Eigenvalues (cm-‘) for Various Fits of the Kolos and Wolniewicz E, F’Z, Potential for H,” 

Cubic tits Fifth order tits 

Vb Hermitian spline 
- 

o- 

I+ 

2+ 
3- 
4+ 

Lagrangian 
____- 

1234.3596 
1410.0356 
2605.4701 
3560.4542 
3744.3607 

Hermitian spline 

1236.2993 1235.9635 
1409.8164 1409.7051 
2604.9767 2604.8131 
3564.1103 3564.1950 
3743.4521 3743.2700 

Lagrangian 
~-____ 

1234.1353 
1410.33cO 
2604.5785 
3564.4195 
3743.4056 

1236.2650 1264.383 I 
1379.5394 1390.9212 
2600.3336 2588.9568 
3564.1700 3555.6382 
3737.6163 3720.7413 

5+ 4816.8434 4815.3089 4815.3309 4815.5052 4804.6423 48 17.9244 
6- 5587.0974 5589.5919 5590.6232 5589.6497 5589.5040 5605.2988 
7+ 5890.5907 5890.8536 5891.2727 5890.9854 5890.1172 5888.1878 
8t 6749.8062 6750.1432 6750.6155 6750.8575 6744.6168 6748.8532 
9- 7422.9190 7425.1974 7426.4895 7425.1265 7424.5624 7418.1941 

10+ 8045.3825 8047.1984 8048.8814 8047.5 100 804 1.9893 8042.3993 
Ilf 8779.574 8781.43 1 8783.041 8781.913 8780.411 8776.992 
12- 9502.634 9504.942 9506.777 9505.327 9501.939 9506.398 
13+ 10201.05 10203.27 10205.45 10203.71 10200.10 10208.05 
14 10900.95 10902.86 10905.09 10903.50 10902.31 10910.24 

15 11598.42 11600.39 11602.30 11600.90 11595.92 11605.97 
16 12282.54 12284.44 12286.01 12284.65 12283.02 12287.77 
17 12950.81 12952.44 12953.92 12952.81 12951.60 12952.92 
18 13604.89 13606.05 13607.32 13606.52 13602.15 13604.12 
19 14244.22 14254.11 14245.83 14245.39 14243.19 14243.27 

20 14866.83 14867.50 14867.76 14867.80 14867.34 14866.24 
21 15471.45 15471.95 15471.60 15472.24 15469.72 15470.37 
22 16057.38 16057.53 16056.43 16057.17 16054.37 16055.52 
23 16623.96 16623.66 16621.79 16623.77 16622.54 16621.16 
24 17169.91 17169.21 17167.36 17169.51 17168.98 17167.08 
25 17693.85 17693.02 17692.60 17693.95 17691.99 17693.93 

a All reported points are used. 
’ Those states marked as (t) have greatest density in the outer minimum, while those marked as (-) 

are mainly in the inner minimum. 

order Lagrangian tit provides an irregular shape evident at both minima, although not 
as pronounced as in the other two cases. 

Apparently higher order interpolation schemes become more sensitive to 
extraneous noise in the tabulated function. Caution is needed in applying such 
methods to ensure that spurious structure is not introduced into the function by the 
interpolation process. In the region near a potential extremum any closely spaced 
points will be close in functional value, and a small amount of noise can become a 
substantial portion of the change in values between the points. Thus higher order 
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TABLE VI 

Eigenvalues (cm-‘) for Various Fits of the Kobs and Wolniewicz E, F’Z:, Potential fr H," 

Lagrangian 

Cubic fits 

Hermitian spline 

Fifth order fits 
-__ 
Lagrangian Hermitian spline 

o- 1234.2336 1236.2766 1235.9387 1236.5146 1236.2591 1229.5402 
I+ 1410.0178 1409.8162 1409.753s 1409.5982 1409.68 10 1409.6937 
2+ 2605.4620 2604.9754 2604.8469 2604.6197 2604.8461 2604.9062 
3- 3560.4227 3564.1060 3564.1853 3564.46 14 3564.2067 3560.0404 
4+ 3744.3040 3743.4448 3743.2714 3743.2595 3743.3678 3743.3584 

Sf 4816.5883 4815.2735 4815.2415 4815.4554 4815.0683 48 14.9242 
6- 5586.2915 5589.4802 5590.3357 5590.0220 5589.7221 5597.0888 
7+ 5890.4057 5890.8288 5891.2664 5891.3464 5890.76 14 5894.3733 
8f 6748.5083 6749.9614 6750.2746 6750.4918 6750.1801 6754.2754 
9- 7421.7182 7425.0273 7426.0356 7425.1272 7425.3908 7439.9870 

10+ 8045.3034 8047.1903 8048.8948 8047.9720 8047.2959 8065.2530 
11+ 8778.735 8781.312 8782.840 8781.738 8781.556 8799.763 
12- 9501.642 9504.798 9506.392 9504.810 9505.130 9527.923 
13+ 10200.80 10203.24 10205.40 10203.79 10203.34 10230.03 
14 10900.78 10902.84 10905.08 10903.63 10902.8 1 10930.00 

1s 11597.81 11600.30 11602.05 11600.64 11600.44 11626.89 
16 12281.89 12284.34 12285.76 12284.41 12284.52 123 10.08 
17 12950.52 12952.40 12953.89 12952.90 12952.40 12976.28 
18 13604.79 13606.04 13607.36 13606.80 13605.99 13626.52 
19 14243.97 14245.08 14245.74 14245.56 14245.08 15261.10 

20 14866.37 14867.44 14867.55 14867.77 14867.48 14878.82 
21 15471.00 15471.88 15471.42 15472.17 15472.02 15478.17 
22 16057.10 16057.49 16056.38 1605 7.80 16057.43 16058.19 
23 16623.83 16623.64 16621.82 16623.86 16623.59 16618.95 
24 17169.81 17169.20 17167.37 17169.55 17169.11 17161.38 
25 17693.67 17693.00 17692.54 17693.89 17693.43 17686.18 

’ Fifteen of the points reported were not used, as noted by Truhlar and Tarara [ 3 1. 
’ Those states marked as (+) have greatest density in the outer minimum, while those marked as (-) 

are mainly in the inner minimum. 

interpolation schemes are forced to take on unreasonable forms to match these 
changes. 

Since the various interpolation schemes work well for exactly known potentials, as 
pointed out earlier, lack of agreement among them is as much an indication of the 
worth of the tabulated points as of the suitability of one method of interpolation or 
another. The Morse oscillator calculations show that the Hermite or spline inter- 
polation gives better results than the Lagrangian, and that the higher order is 
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1.8 2.0 2.2 1.8 2.0 2.2 1.8 2.0 2.2 

FIG. 2. The interpolated inner minimum of the Kotos and Wolniewicz E, F’C, potential of Hz. 
Shown are Lagrangian (left panel), Hermite (center), and spline (right) interpolation. Both third (solid 
line) and fifth (dashed line) order functions were used. The two lines are indistinguishable in the center 
panel. All points reported by Kotos and Wolniewicz were used. The tabulated points are shown as 0. 
The filled circle at the bottom represents six points too close to resolve on this scale. The shaded box 
within the small inset shows the location of these panels within the potential. The potential is given in 
units of cm- I. 

preferable, at least for potentials with low noise levels. The splines enjoy an 
advantage over the Hermitian interpolates in that there is no need to have the 
tabulated values of the derivatives at each point. 

It is emphasized that a “black-box” interpolation scheme is dangerous, and that the 
results of interpolation should be carefully scrutinized before they can be trusted. A 
reasonable scheme would be to apply both third and fifth order splines, and consider 
a lack of agreement between the two to indicate a lack of smoothness in the tabulated 
function. A visual inspection of the interpolated function would show if any spurious 
oscillations were present in one or both cases. An inspection of the fit potential would 
suggest which points should be refined or discarded. Refinement might imply 
recalculation of the points with greater accuracy, or a smoothing of the points in that 

900- 
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FIG. 3. .The interpolated inner minimum of the Kotos and Wolniewicz E, F’Z, potential of H,. 
Shown are Lagrangian (left panel), Hermite (center), and spline (right) interpolation. Both third (solid 
line) and fifth (dashed line) order functions were used, but only in the case of the spline tits are the 
curves distinguishable. Fifteen points clustered around the extrema have been deleted, as described in the 
text. The tabulated points are shown as Cl. The shaded box within the small inset shows the location of 
these panels within the potential. The potential is given in units of cm I. 
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FIG. 4. The interpolated outer minimum of the Kotos and Wolniewicz E, F’Z, potential of H,. 
Shown are Lagrangian (left panel), Hermite (center), and spline (right) interpolation. Both third (solid 
line) and fifth (dashed line) order functions were used. All points reported by Kolos and Wolniewicz 
were used. The tabulated points are shown as 0. The tilled circle at the bottom represents six points too 
close to resolve on this scale. The shaded box within the small insert shows the location of these panels 
within the potential. The potential is given in units of cm-‘. 

region. The agreement of the various types of fit with appropriate points discarded 
gives an idea of the maximum accuracy one could hope for from the data available. 

C. Long-Range Efects 

For many potentials the wavefunction is non-negligible over a large range of long 
and short distances. If the tabulated points do not contain sufliciencly long- or short- 
range values, then it is necessary to extrapolate those values in some way. The effects 
of the extrapolation form on the eigenvalues obtained will now be assessed. 

One form of extrapolation which has been used in scattering calculations is an 
inverse power form 

V=Ar-” 

350- 
I I I 1 : 1 

4.2 44 4.6 4.2 4.4 4.6 42 4.4 4.6 

(14) 

FIG. 5. The interpolated outer minimum of the Kolos and Wolniewicz E,F’C, potential of H,. 
Shown are Lagrangian (left panel), Hermite (center), and spline (right) interpolation. Both third and fifth 
oder functions were used. The two tits are indistinguishable in all cases. Fifteen points clustered around 
the extrema have been deleted, as described in the text. The tabulated points are shown as cl. The shaded 
box within the small insert shows the location of these panels within the potential. The potential is given 
in units of cm-‘. 
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where A and (I (> 0) are determined by the values of the outermost two tabulated 
points. A second form, and one more appropriate to the Morse potential, is 

V = BeCb’, (15) 

where B and b are determined in the same way as A and a above. A second approach 
uses the “correct” asymptotic form for the potential. In the case of real inter- 
molecular potentials this form will be a sum of integer inverse powers of Y 

v= 2 C,r-“, 
n 

where the C,‘s are determined from empirical multipole moments, polarizability, and 
hyperpolarizabilities. For intramolecular potentials, the situation is often more 
complicated, and exchange forces may dominate even at large distances, especially 
for molecules in excited electronic states [23]. This leads to a form different from 
Eq. (16). In the case of the Morse potential, Eq. (12), the asymptotic form can be 
extracted to give 

V = 4 - 8e-‘l’. (17) 

In the following third and fifth order spline interpolation will be examined, and the 
results compared to ensure that the effects of interpolation have been eliminated. The 
results of these calculations are reported in Tables VII and VIII, which contain the 

TABLE VII 

Eigenvahres for Spline Interpolated Morse Potential Points Matched to Various Long-Range Forms at 
r=4’ 

Exact Morse Asymptotic Asymptotic Matched Matched 
V form form’ for mc exponential inv. power 

0 0.93748367d 0.93747930 0.93748267 0.93748343 0.93748201 
0.93750003 0.93749567 0.93749912 0.93149919 0.93749837 

1 2.43748835 2.43673365 2.43725246 2.43142253 2.43700406 
2.43750002 2.43674756 2.43127826 2.43143425 2.43701611 

2 3.43749301 3.42585684 3.43166602 3.43485503 3.41505281 
3.43750001 3.42589812 3.43189253 3.43486250 3.41506262 

3 3.93749764 3.93452026 3.93439778 3.92769455 3.94888913 
3.93750000 3.93452294 3.93445 118 3.92169694 3.94888970 

’ The central region is an interpolation on 25 equispaced points. Eigenvalues are in the reduced units 
of Eq. (1). 

b The form is Y(r) = 4 - 8e-“*, where the interpolation is performed on the region from r = -2 to 
r = 4, with two additional points at r = 4.25 and r = 4.5. 

‘Same form as above, but with additional point located at r = 5 and r = 6. 
d Upper number is for third order spline interpolation, while the lower is for fifth order. 
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TABLE VIII 

Eigenvalues for Spline Interpolated Morse Potential Points Matched to Various Long-Range Forms at 
r=6’ 

Exact Morse Asymptotic Asymptotic Matched Matched 
I? form formh form’ exponential inv. power 

____ ___~ 
0 0.93748367d 0.93748366 0.93748367 0.93748367 0.93748367 

0.93750003 0.93750002 0.93750003 0.93750003 0.93750002 

1 2.43748835 2.43748691 2.43748795 2.43748825 2.4374869 1 
2.43750002 2.43749858 2.43749964 2.43749992 2.43749858 

2 3.43 149302 3.43725186 3.43739554 3.43745857 3.43696890 
3.43750001 3.43725956 3.43740591 3.43746557 3.43697605 

3 3.93749765 3.93616613 3.93659095 3.93653437 3.91835129 
3.93750000 3.93617137 3.93661342 3.93653674 3.91835366 

‘The central region is an interpolation of 33 equispaced points. Eigenvalues are in reduced units of 
Eq. (1). 

’ The form is V(r) = 4 - 8e-“*, where the interpolation is performed on the region from r = -2 to 
r = 6, with two additional points at r = 6.25 and r = 6.5. 

’ Same form as above, but with additional point located at r = 7 and r = 8. 
d Upper number is for third order spline interpolation, while the lower is for fifth order. 

eigenvalues for potentials with the various long-range forms described above. In all 
cases the short-range form is the exact Morse oscillator potential. In Table VII the 
potential is interpolated between I = -2 and r = 4, with the long-range form beyond, 
while in Table VIII the interpolated region is between r = -2 and Y = 6. For the 
asymptotic form, if the interpolation and long-range form do not overlap regions, 
then a discontinuity will result at the joining point. A remedy is to interpolate the set 
of discrete points for the Morse function plus two more for the asymptotic values, 
thus joining them smoothly. The two extra points are chosen in one of two ways-the 
two points may be chosen such that the separation between them is the same as 
between any other two points, or the points may be chosen farther apart, so as to 
smooth the joining even more. These results are shown in clumns 2 and 3, respec- 
tively, in Tables IX and X. In column 3 the results are for the potential, where this 
separation is 1 reduced unit. 

The information in Tables VII and VIII is not easily interpretable, since it is not 
clear how the source of the error is distributed between interpolation and 
extrapolation. Therefore Tables IX and X present the percentage error in each 
column of Tables VII and VIII, respectively. The excellent agreement between the 
third and fifth order spline results indicates that the error shown is due to 
extrapolation alone. 

With increasing eigenvalue the error increases, which is the opposite of what is 
observed for interpolation error, This is to be expected since the wavefunctions for 
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TABLE IX 

Percentage Error in Eigenvalues Due to Extrapolation of Spline Interpolated Morse Potential Points” 
- -- -- 

v 
Asymptotic 

formh 
Asymptotic 

formC 
Matched 

exponential 
Matched 

inv. power 

-4.661 - 4d -1.067 -4 -2.560 - 5 -1.771 - 4 
-4.65 1 - 4 -9.707 - 5 -2.560 - 5 -1.771 -4 

-3.096 - 2 -9.678 - 3 
-3.087 - 2 -9.098 - 3 

-3.385 - 1 -1.695 - 1 
-3.375 - 1 -1.631 - 1 

-7.562 - 2 -7.873 - 2 
-7.561 - 2 -7.743 - 2 

-2.700 - 3 -1.987 - 2 
-2.698 - 3 -1.985 - 2 

-7.674 - 2 -6.528 - 1 
-7.613 - 2 -6.521- 1 

-2.490 - 1 2.893 - I 
-2.490 - 1 2.893 - 1 

’ Percentage error calculated as 100(x - y)/,v, where y is the entry in the first column of Table VII, 
and x is the entry from the appropriate long-range form (see text). The potential is matched to various 
long-range forms at r = 4. 

b The form is V(r) = 4 - 8e-“2, where the interpolation is performed on the region from r = -2 to 
r = 4, with two additional points at r = 4.25 and r = 4.5. 

’ Same form as (b), but with additional points located at r = 5 and r = 6. 
dUpper number is for third order spline interpolation, while the lower is for ffth order. The trailing 

signed integer is the power of 10 to be multiplied by the entry. 

higher eigenvalues extend farther into the long-range part of the potential, and are 
thus more affected by errors there. 

The inverse power extrapolation gives the worst results in this case, as expected, 
and will not be considered further. The remaining forms all have the correct, i.e., 
exponential, asymptotic behavior. In columns 1 and 2 of Tables VII and VIII, 
marked “asymptotically correct,” the potential becomes 4 - 8eer12 at long range, 
which is exact in the limit of large r, but incorrect for shorter distances. In column 3 
the matched exponential form is used and the potential is correct at short distances 
beyond the joining point, but has the wrong exponential dependence for large 
distance. The difference in columns 1 and 2 reflects an attempt to make the transition 
smoother, as described above, for the potential of column 2. Of course, the matched 
exponential will approach the asymptotic value as the matchhg point is moved out. 
Thus better results are obtained in Table X for both the matched and asymptotic 
exponential cases. 

IV. SUMMARY AND CONCLUSIONS 

Several conclusions can be drawn from the results presented here. For numerical 
solution of the Schriidinger equation with bound state boundary conditions, the 
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TABLE X 

Percentage Error in Eigenvalues Due to Extrapolation of Spline Interpolated Morse Potential Points” 

Asymptotic Asymptotic Matched Matched 
I’ formh form’ exponential inv. power 

0 -1.067 - 6d 
-1.067 - 6 

1 -5.908 - 5 
-5.908 - 5 

2 -7.016 - 3 
-6.995 - 3 

3 -3.382 - 2 
-3.314 - 2 

<l.O-6’ 
<l.O -6 

-1.641 - 5 
-1.559 - 5 

-2.836 - 3 
-2.737 - 3 

-2.303 - 2 
-2.252 - 2 

(1.0-6 
<l.O-6 

-4.103 - 6 
-4.103 - 6 

-1.002 - 3 
-1.002 - 3 

-2.446 - 2 
-2.446 - 2 

(1.0-6 
-1.067 - 6 

-5.908 - 5 
--5.908 - 5 

-1.525 - 2 
-1.524 - 2 

-4.863 - 1 
-4.863 - 1 

” Percentage error calculated as 100(x - r)/y, where y is the entry in the first column of Table VIII, 
and x is the entry from the appropriate long-range form (see text). The potential is matched to various 
long-range forms at r = 6. 

‘The form is V(r) = 4 - 8e-‘I*, where the interpolation is performed on the region from r = -2 to 
r = 6, with two additional points at r = 6.25 and r = 6.5. 

‘Same form as (b), but with additional points located at r= 7 and r= 8. 
‘Upper number is for third order spline interpolation, while the lower is for fifth order. The trailing 

signed integer is the power of 10 to be multiplied by the entry. 
(’ Entries agree to accuracy reported. 

Numerov-Cooley method is the most efficient of those examined here when the 
potential is easily evaluated. In situation where multiple minima exist, or the potential 
evaluation requires a great computational effort, FEM is easier to use than 
Numerov-Cooley, and is superior to the other matrix methods discussed herein. 

Interpolation of a priori data points for potentials must be made with extreme care. 
Although higher order polynomial interpolates are accurate for accurate data, they 
are very unpredictable with noisy data. The higher order spline functions are 
particularly dangerous in this respect. It is always wise to plot the fits and visually 
inspect them before using them and to try several different tits to obtain an indication 
of the accuracy obtainable with the data. Many closely spaced points in a particular 
region of the potential tend to exaggerate noise in the interpolated function, and the 
fitted points should be selected judiciously. The higher eigenvalues appear to be less 
sensitive to the interpolation. 

The long-range form of the potential also effects the eigenvalues. In this case it is 
the higher eigenvalues which are most likely to be affected; they correspond to states 
with classical turning points closer to the long-range region. If in the matching 
procedure any lack of smoothness is introduced into the potential, the eigenvalues 
nearest the joining will be most affected. 
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APPENDIX A: NATURAL COORDINATES AND LAGRANGIAN INTERPOLATES 

The basis functions used for evaluation of the finite element integrals over elements 
are best formulated in a local rather than global coordinate system. This approach 
allows the integrals to be evaluated over an arbitrary element and then readily 
assembled into the complete system given by Eqs. (6~(8). Since these functions 
satisfy the property of Eq. (9), interelement continuity is automatically assured. 

For the following discussion, we assume that elemetns are of equal size with 
primary spacing h. Let ri and rj be the initial and final global coordinate specifying 
the element (h = rj - ri). We choose the local coordinates 

Li(r) = (rj - r)/h (18) 

and 

L,(r) = (r - ri)/h. (19) 

Clearly these coordinates satisfy the condition on interpolates that Li(rk) = Ji, with 
k = i or j. An arbitrary global point r can be specified in terms of L, and Lj by 

r = Liri -I- Ljrj (20) 

It is easy to see that Li + Lj = 1 from Eqs. (18) and (19). Since the global system is 
one dimensional, two coordinates overspecify the system. However, the symmetry 
afforded by this construct is useful in the application of the interpolates. We observe 
that Li is zero at r = rj while Lj is unity there; and Li is unity at r = ri while Li is 
zero there. We further observe that the linear coordinates Li and Lj are actually 
linear Lagrangian interpolation functions. 

Since derivatives of the interpolation functions are required for the energy integrals 
Hji of Eq. (7), they may be readily given by 

dLJdr = -l/h (21) 

and 

dLJdr = l/h. (22) 

Since all higher order Lagrangian interpolates will simply be polynomials of the 
local coordinates, the following integration formula facilitates such evaluations: 

5 Lf’L!dr=p!q!h/(p+q+ I)!. (23) 

The specification of higher order Lagrangian interpolates can easily be determined 
following a procedure outlined by Silvester [8]. The approach generates any order (or 



QUANTAL BOUND STATE SOLUTIONS 179 

degree) n Lagrangian interpolate as a function of local coordinates. The interpolate is 
designated by the product function N,b(Li, Lj), where u + b = n, and given by 

where 
Nab(Li, Lj) = K&i) 4CLjh (24) 

--3 a > 0, 
(25) 

= 1, a = 0, 

and similarly for Jyrb(Lj). For example, for quadratic interpolates n = 2; ab can be 20, 
02, or 11. The 20 and 02 functions correspond to primary interpolates and 11 to 
secondary interpolates. They are written 

primary: N,, = Li(2Li - l), 

secondary: N,, = 4LiLj, 

primary: N,,, = Lj(2Lj - 1). 

Again it is clear (see Fig. 6) that these interpolates satisfy the Eq. (9) condition; e.g., 

1. ELEMENT I_ ELEMENT _ 
I 

PRIMARY 
QUADRATIC 
INTERPOLATES 

n-2 n-l n n+l n+2 

I- 

SECONDARY 
QUADRATIC 

,5- INTERPOLATE 

Li’ I Li’ l/2 Li’O 

Lj=O Lj’l/2 Lj’ I 

FIG. 6. Quadratic interpolates and natural coordinates. The primary interpolate associated with 

node n is given in the upper figure. The secondary associated with node n + 1 is given in the lower 
figure. For a given element (between nodes n and n + 2), there are three interpolates: the primary 
branches N,, and N,, and the secondary interpolate N,, . It is clear from the figure that at a node only a 
single interpolate is non-zero. 
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NrO is unity at Li = 1 and zero at the remaining two nodes, Li = i and 0 (or 
equivalently Lj = i and 1). The primary functions NZO and No2 extend into adjacent 
elements, but are defined by the nodes in the respective elements. The secondary 
interpolate N,, is only non-zero in the element containing it. In global coordinates, 
these functions are less concise. For example, for equally spaced elements we have 

N,,= (r-;fh)[2 (r-;+h) - 11, ri-h<rr(ri, 

= 0, r > rj, r < ri - h. 

Since the primary node at ri is shared by two elements, the interpolate for ri < r < rj 
is different from that in the element preceding it (ri - h < r ( ri). The interpolate is 
identically zero outside these two elements. 

Cubic Lagrangian interpolates (used in the calculations here) can be given using 
the above scheme by 

primary: N30 = ~Li(3Li - 1)(3L[ - 2), 

secondary: iv,, = $LiLj(3Li - l), 

secondary: N,* = ;LiLj(3Lj - l), 

primary: No3 = ~Lj(3Lj - 1)(3Lj - 2). 

All of the interpolates satisfy sum rules which can be used to check integration 
results over an element. In particular, 

xNk= 1, 
k 

and 
2 N; = 0, 

k 

(26) 

(27) 

where the sums are over all nodes of a particular element. 

APPENDIX B: AN ALGORITHM FOR THE SOLUTION OF THE 
SYMMETRIC BANDED GENERALIZED EIGENVALUE PROBLEM 

The FEM approach reduces the Schrodinger equation to a generalized algebraic 
eigenvalue problem 

(6 - E”S) &” = QT (28) 

where u and S are as previously defined. E, is an eigenvalue, and 8!, is its associated 
eigenvector. It is important to note that both &J and S are symmetric and banded, 
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with a bandwith of order 2m + 1, where m is the order of the Lagrangian interpolates 
employed. While methods do exist for the generalized eigenvalue problem which 
make use of the symmetry of the matrices, these destroy the band structure of the 
matrices, increasing computation time and storage requirements. These methods turn 
the generalized eigenvalue problem into a regular eigenvalue problem with full 
symmetric matrices. The use of these methods for large numbers of elements is 
prohibitive, in terms of both time and storage requirements. Thus it is more efficient 
to use the following iterative approach. 

If an approximate eigenvalue e,. is known, it can be used to form the operator, 

Gk.> S = (I--I - e,.S>-’ S. (29) 

Applying this to an arbitrary vector, 

produces 

We,.) Svflil. =x X,,,a,;,.,,,,/(E,., - e,.) 
=cCa n+ I:a',r x 1%') 

(30) 

(31) 

where c is a normalization constant. v,,;, can now be identified as the nth approx- 
imation to X,, in the iteration scheme, Eq. (31). It is convenient for purposes of this 
method to use a supremum norm, 

lIv~:~// = s”P(un;r,j) = ‘9 (32) 

the largest element of v,:,.. If e,. is such that 

I-E,. - e,.l G IE,., - e,l, Vf v’, (33) 

then v,+ ,:r is a better approximation to X,. than was v,:,.. After a few iterations v,:,. 
is very close to X,., and 

l/c = El. - e,., (34) 

or. 
E,. = e,. + l/c. (35) 

In practice, the e,‘s and v,,;~‘s are obtained from a low-accuracy calculation using 
direct matrix diagonalization methods, and stored on disk. Only one vector need be 
present in core at any one time. The vector is improved by iteration, and is then 
written back to disk. Each iteration requires one (banded) matrix multiplication, 
Sv,,:,., and the solution of the banded system of equations, 

~03 - e,S> v~+~+. = SvniLx. (36) 
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This is done using a variant of the LU decomposition method [24] which requires the 
storage of only one of the triangular factors, which will have the same band structure 
as the original matrix. This method is described in Appendix C. Since the left-hand- 
side matrix @j - e,!$) does not change from iteration to iteration, the decomposition 
is performed only once, and the solution of the system of equation reduces to a 
forward and a backward substitution for each iteration. The initial guess v,,:~, must be 
obtained for each eigenvector. Although with a good initial guess to the eigenvalue an 
arbitrary vector would eventually produce the correct answer, the closer the initial 
guess is to the proper vector the fewer iterations are required. The eigenvectors read 
in from the results of the crude first guess have fewer points than are needed for the 
refined guess, so an interpolation procedure is needed. As was shown in Section II, 
spline function interpolation seems to minimize the error in the wavefunction between 
known points, and thus is used here to produce the wavefunction at all necessary 
points. 

APPENDIX C: AN EFFICIENT ALGORITHM FOR THE 
SOLUTION OF BANDED SYMMETRIC MATRIX EQUATIONS 

Consider the matrix equation, 

AX=B, (37) 

where A is a symmetric real valued banded matrix. If this equation has to be solved 
for a particular 4 and a number of B’s it is useful to decompose 4 into triangular 
factors, and solve two related equations, which may be done more easily. In 
particular, since .$ is symmetric, the factors may be chosen such that 

A$ = 8’s. (38) 

It is well known that this produces an upper and a lower triangular matrix, each with 
the same half bandwidth as 4. If, however, 4 is not positive definite, then some of the 
elements of !j may be pure imaginary. 

The matrix S can be easily generated by a set of recursion relations [24], 

s 112 
I1 =a,, 3 

(39) 
i-l 

Sij = aij-- 2 SkiSkj Sii (.i > 9, 
k=l 

sij = 0 (i > j). 

It is easy to see from Eq. (39) that any row of S is either pure real or pure imaginary. 
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Real valued matrices can be produced by the use of a diagonal matrix IJ, such that 
dii = 1 if sii is real, and dii = i if Sij is imaginary. Note that Q” = Z, the identity, and 
so, 

lj = S’S = gQ”S = @Q”) QS. 

Defining E = !jjQ” and u = Q$, Eq. (40) becomes 

(40) 

l$=CV. (41) 

u is easily produced from Eq. (39) by setting uij = sij if sij is real, and uij = - ) sijl if 
sij is imaginary. Only JJ need be calculated and stored since the elements of I, are 
easily generated from 

L, = sgn(uii)uij, 

where sgn(x) is the algebraic sign of x. 
Now Eq. (37) can be written as a combination of two matrix equations, 

(42) 

LZ=B, (43) 

and 

JJJg=& (44) 

Each can be efficiently solved by substitution, since both C and I,J are triangular 
matrices. 
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